| Home | E-Submission | Sitemap | Contact us |  
top_img
Asian J Beauty Cosmetol > Volume 17(1); 2019 > Article
피부 표면 지질과 피부 건강과의 관계

요약

피부 표면 지질은 지질과 표피 붕괴 지질을 분비하는 피지선으로 구성됩니다. 주성분에는 트리글리 세라이드, 유리 지방산, 왁스 에스테르, 스쿠알렌, 콜레스테롤 등이 포함됩니다. 피부 표면의 지질은 피부의 표면에 달라 붙어서 물리적, 화학적 및 생물학적 특성에 의존하여 피부 건강에 중요합니다. 본 연구는 관련 문헌을 국내외에서 검토하고 피부 표면 지질이 피부 보습, 항산화 및 미세 생태계 유지에 미치는 영향을 간략하게 설명하고 주로 다른 피부 표면 지질보다 외부 유해 요인의 영향을 더 받는 스쿠알렌 및 유리 지방산의 산화 및 신진 대사를 소개합니다. 뿐만 아니라, 스쿠알렌 산화 생성물과 트리글리세리드 대사 산물의 피부 건강에 미치는 영향에 대해 논술하였다. 무엇보다도 피부 표면 지질과 피부 건강 간의 관계를 밝히고 피부 표면을 조절하여 화장품의 연구 개발에 대한 이론적인 참고서를 제공하기 위함이다.

Abstract

Skin surface lipids are composed of sebaceous glands secreting lipids and epidermal disintegration lipids. The main components include triglycerides, free fatty acids, wax esters, squalene, cholesterol and so on. Skin surface lipids adhere to the surface of the skin and rely on their physical, chemical and biological properties to be important for skin health. This article reviews the relevant literatures at home and abroad, briefly describes the effects of skin surface lipids on skin moisturization, anti-oxidation and maintenance of micro-ecology, and mainly introduces the oxidation/metabolism of squalene/free fatty acids, which is more affected by external harmful factors than other skin surface lipids. As well as, the effects on skin health of squalene oxidation products and triglyceride metabolites are introduced. Above all, the oxidation/metabolism of skin surface lipids and the role of their products are illustrated in order to reveal the relationship between skin surface lipids and skin health and to provide a theoretical reference for the research and development of cosmetics by regulating skin surface lipids.

中文摘要

皮肤表面脂质是由皮脂腺分泌脂质和脱落表皮崩解脂质组成,主要成分包括甘油三酯、游离脂肪酸、蜡酯、角鲨烯、胆固醇等。皮肤表面脂质附着于皮肤表面,依赖其物理、化学及生物特性对皮肤健康具有重要的意义。 本文综述了国内外相关文献,简述了皮肤表面脂质对皮肤的润泽、抗氧化和维护微生态的作用,并主要介绍皮肤表面脂质中受外界有害因素影响较明显的角鲨烯/游离脂肪酸的氧化/代谢过程,以及产物如角鲨烯氧化产物、甘油三酯代谢物游离脂肪酸等对皮肤健康的影响,来说明皮肤表面脂质的氧化/代谢过程及产物的作用,以期揭示皮肤表面脂质对皮肤健康的关系,为调节皮皮表面脂质的化妆品的开发提供理论参考。

Introduction

皮肤表面脂质(skin surface lipids,SSLs)是皮肤最外层皮脂膜的主要成分,其功能与脂质含量、成分、比例结构密切相关。随着化妆品科学的发展和技术进步,近年来针对皮肤表面脂质、以及内、外环境因素引起的改变,与皮肤健康状态的关系成为研究热点。一方面,目前对于正常SSLs的认识已经比较清楚,根据正常SSLs比例结构而构建的天然来源或人工合成的SSLs类似物,在化妆品中得到广泛应用并收到良好效果(Addy et al., 2017; Blaak et al., 2017; Oh et al., 2016);另一方面,人们也逐渐认识到,正常皮肤分泌和代谢的脂质,在紫外线或空气污染物等外界有害因素的作用下,发生氧化、异常代谢等,其产物对皮肤产生损害(Niki et al., 2015; Lohan et al., 2016; Shimizu et al., 2018)。
在外界环境有害因素作用下,究竟有多少正常SSLs成分发生变化,对皮肤可能产生的损伤是什么,还未见相应的系统报道。本文在分析了SSLs与皮肤健康的关系的基础上,并综述了角鲨烯氧化、甘油三酯代谢,及其对皮肤的危害,为化妆品研究人员从调节SSLs角度出发以维持皮肤健康状态提供思路。

Skin surface lipids

SSLs是由皮脂腺分泌脂质和脱落表皮崩解脂质组成的混合物,其组成和含量随皮脂腺分泌脂质含量及脱落的表皮细胞数目不同而变化。皮脂腺来源的脂质由皮脂腺合成,并以全浆分泌的形式被排泄到皮肤表面;表皮来源的脂质由角质形成细胞合成,是随着角质层细胞的代谢崩解分布至皮肤表面的结构脂质(Feingold et al., 2012)。SSLs与汗腺分泌的汗液及皮肤表面透皮蒸发水,融合乳化在皮肤表面形成一层膜,通常称为皮脂膜。
SSLs与人体其他内部组织器官有不同的脂质组成和代谢特点。Nicolaides (1974)对SSLs的组成(见Table 1)和作用进行了广泛研究。

The function of skin surface lipids on skin

SSLs依赖其物理、化学、生物特性对皮肤起保护作用,以应对外界刺激。SSLs主要通过润泽、抗氧化作用和保持皮肤微酸性来维持皮肤健康(He et al., 2012)。

1. Moisturizing

SSLs利于保持皮肤水分,使皮肤滑润柔韧、富有光泽。研究表明,相对于健康人,以角质层水合作用减少、经皮水分散失增强为特征的特应性皮炎人群的皮脂腺脂质(尤其是角鲨烯和蜡酯)含量减少2倍(Shi et al., 2015)。Rissmann et al. (2012)验证制备的胎儿皮脂类似物对皮肤有很好的保水和促进皮肤屏障恢复作用。

2. Anti-oxidation

早期研究SSLs在215 nm有最大光谱吸收,并证实前额上的皮脂膜会减少300 nm UV约10%的透射率。并且,SSLs中的角鲨烯(Boussouira et al., 2016)、甘油三酯(Jin et al., 2014)等通过不同分子机制,结合或清除皮肤表面产生的活性物(如自由基、炎性因子等),减少皮肤因化学应激、紫外辐照、微生物代谢等引起的氧化、炎症损伤。

3. Maintain micro-ecology

SSLs中的游离脂肪酸(free fatty acid, FFAs)和汗液中的酸性成分维持皮肤表面的微酸性环境(Man et al., 2007),这种微酸环境不仅利于皮肤形成化学屏障以应对外界酸、碱刺激,更重要的是利于特异性选择定植在皮肤上的微生物菌群。
皮肤表面定居大量的微生物,主要为细菌,少量真菌、病毒和螨虫,它们基于皮肤不同生理形态下的微环境,组成生态系统,常称为“皮肤微生态”,其主要作用为消化凋亡细胞、分解多余脂质、通过竞争性抑制抵抗外来病原菌入侵。已有研究表明,皮肤中的微生物-免疫相互作用通过产生关键的抗炎和抗微生物物质(如抗菌肽,antibacterial peptide,AMP)以维持健康的组织平衡状态(Sanford et al., 2013),对于保持皮肤最佳屏障功能、病原体防御和组织修复至关重要。
角质形成细胞参与皮肤免疫反应,通过表达许多模式识别受体(pattern recognition receptors,PRRs),通过识别保守的分子实体如脂蛋白,核酸,细胞壁成分和鞭毛来感知微生物。虽然角质形成细胞在稳态下表达许多抗微生物肽,细胞因子和趋化因子,但PRRs的激活可以迅速增加这些分子的表达,从而产生直接的抗菌作用以及额外免疫细胞的募集和教育(Sanford et al., 2013)。皮肤的共生细菌可产生具有抗菌特性的分子以限制皮肤病原微生物的生长,Iwase et al. (2010)表明表皮葡萄球菌的临床分离株能够通过产生丝氨酸蛋白酶Esp来抑制金黄色葡萄球菌生物膜的形成,并增强抗菌肽(human-β-defensins, hBD-2)的抗菌作用。皮肤微生物也可通过影响宿主细胞的功能而促进皮肤免疫,共生微生物通过TLR2的信号传导导致角质形成细胞中抗微生物肽的表达增加,并阻断由致病性金黄色葡萄球菌诱导的NF-κB抑制(Wanke et al., 2011)。 Plichta et al. (2017)研究确定表皮脂质和各自的脂质合成酶在供体皮肤和烧伤边缘均显着降低,并进一步确定了供体皮肤和烧伤边缘中调节屏障通透性和AMP活性的表皮蛋白酶的异常产生,以及由AMP诱导的促炎细胞因子的更多产生。
微酸性环境抑制皮肤表面微生物的生长,尤其FFAs对皮肤微生态平衡有重要影响。Nicolaides (1974)早期预测FFAs决定皮肤表面的微生物类型, Nakatsuji et al. (2010)证实FFAs对痤疮丙酸杆菌有直接抗菌活性,并通过诱导皮脂腺细胞中hBD-2的表达,来增强皮肤的先天抗菌防御能力。

Oxidation/metabolism of skin surface lipids

SSLs不仅决定皮肤的屏障功能,也是重要的信号传递介质。环境压力改变SSLs组成、反应性和分布,从而影响皮肤生物学(Gruber et al., 2016)。目前,由天然或医源性紫外线照射、常驻和致病微生物菌群的代谢活动、化学品和化妆品暴露所引起的SSLs的定性修饰(De Luca et al., 2010)一直是研究重点。

1. UV and air pollution affects the oxidation of skin surface lipids

SSLs在介导环境刺激/压力源的生物效应方面的作用得到确认(Boussouira et al., 2016),角鲨烯(squalene, SQ)因结构中含6个双键成为其中最敏感的脂质成分。
外界刺激作用于皮肤,一旦外界刺激突破人体抗氧化剂α-生育酚和泛醇-10的防御,SQ将成为最活跃的牺牲型抗氧化剂,其与单线态氧(1O2)反应,发生高度复杂的氧化链反应,生成角鲨烯氧化物成为皮肤表面主要的脂质过氧化物,包含大量氢过氧化物(SQOOH,可随氧化作用时间形成不用的同分异构体),和少量氢氧化物(SQOH)(Ekanayake et al., 2003)。
紫外线和空气污染是影响皮肤氧化状态最常见且有效的因素。紫外线(主要是UVA)通过作用于由丙酸杆菌在毛囊导管中产生的卟啉,产生多种形式的高活性氧原子(主要是1O2),来催化加速皮肤表面的SQ氧化。空气污染中多环芳烃、氮氧化物、硫化物等均能促进SQ氧化,研究发现香烟烟雾与UVA协同作用使SQ氧化程度大大加重,在UVA诱导下,香烟烟雾增强皮脂氧化作用约3.5倍,而香烟的甲醇提取物增加了23倍的角鲨烯氧化 (Pham et al., 2015)。

2. Microorganisms affect the metabolism of skin surface lipids

皮肤微生态的平衡维持皮肤的健康状态,游离脂肪酸(FFAs)是其中主要的物质基础和重要的调控介质。FFAs在新分泌的皮脂腺脂质中并不存在,而在SSLs中含量约占25%,主要是由皮肤表面定植的微生物产生的脂肪酶将皮脂腺脂质中的甘油三酯水解得到,因此皮肤表面微生物影响SSLs组成。FFAs减少干燥、氧化等环境压力对皮肤的损伤,同时为表皮微生物生长提供营养物质和适宜的酸性环境,抑制有害菌在皮肤的定植和生长。FFAs的抗菌作用是皮肤菌落平衡的重要因素,FFAs组成变化是皮肤微生物改变的主要原因 (Takigawa et al., 2005)。
痤疮丙酸杆菌感染是痤疮主要的致病性触发因素,这种亲脂性细菌代谢产生大量FFAs,引起慢性炎症反应和漏斗上皮的纤维化,从而维持黑头粉刺、脓疱和结节的形成,有研究者认为类似的机制部分解释特应性皮炎 (AD)和脂溢性皮炎(SD)的慢性炎症过程 (Dawson et al., 2007)。Pappas et al.(2013)研究不同民族人群微生物菌群、FFAs组成与皮肤状态的关系,发现非洲裔美国女性皮肤微生物产生的FFAs中,奇数碳链游离脂肪酸 (C15:0)、(C17:1)含量较低,(C14:0)、(C16:1△10)、(C18:1△9)含量较对照组高,对应有更低的水分散失 (TEWL)和更好的皮肤屏障。

Oxidation/metabolites of skin surface lipids cause damage to the skin

皮肤脂质代谢具有高度活性和多样性,脂质对于皮肤的屏障和信号功能至关重要 (Kendall et al., 2015; van Smeden et al., 2014) 。SSLs的定性修饰,成为涉及皮脂代谢的皮肤病学诊断的病理学标志,如花斑癣、痤疮、特应性皮炎或脂溢性皮炎等。

1. SQ

角鲨烯不会对皮肤结构和功能带来负面生理影响,而角鲨烯的氧化产物作用于更深的皮肤层,介导局部防御性炎症、光保护性免疫反应,导致粉刺痤疮产生和加剧、并可能加速皮肤老化,在更高浓度可能诱导局部甚至全身性的免疫抑制,甚至牵涉到皮肤癌发生。已证实痤疮患者皮肤中SQ减少,角鲨烯氧化副产物增加,且日光照射加剧痤疮症状。体外研究SQ氧化产物对角质形成细胞的作用, Picardo et al.(1991)发现,SQ氧化产物在低浓度和短时间孵育时刺激DNA和蛋白质合成,而在更高暴露时间和剂量下会诱导细胞损伤和抑制有丝分裂活性; 并且上调细胞促炎因子释放(Ottaviani et al., 2006),并可能通过这种机制激活黑素细胞树突并刺激黑色素合成。

2. FFAs

FFAs对维持和恢复皮肤屏障、保持皮肤微生态平衡至关重要,但含量异常的FFAs会降低皮肤屏障、利于有害菌侵入,造成皮肤损伤甚至病变。Cannavò et al. (2017)研究发现银屑病患者和健康组相比,非皮损区和皮损区均显示更高的脂质含量水平,对应更差的屏障功能。针对花斑癣研究发现,在皮脂含量高的区域马拉色菌大量生长并出现大的无色斑点,可能与含量异常的不饱和脂肪酸亚油酸 (C18:2)引起马拉色菌脂质过氧化物酶的氧化活性显著增加有关 (Nazzaro-Porro et al., 1986)。van Smeden et al. (2014)测定过敏性湿疹 (AE)患者皮损区较非皮损区长链游离脂肪酸含量降低、不饱和脂肪酸含量增加, Ní Raghallaigh et al. (2012)研究也发现乳头状红斑痤疮患者皮脂中长链饱和脂肪酸含量降低,表明长链脂肪酸、饱和脂肪酸可能更利于皮肤保持健康状态,这可能与皮肤微生态的平衡相关。

Conclusion

SSLs对皮肤状态有重要影响,内、外环境因素引起的成分、含量及结构变化影响皮肤状态,其中SQ和FFAs因其独特性而备受关注,其自身及其氧化/代谢的过程产物与皮肤的健康存在必然联系,其含量能够表征皮肤的皮肤的健康状态,随着检测手段的进步和皮肤脂质组学的研究的深入,更清晰明了的揭示皮肤脂质中各成分的作用及作用途径有很重要的研究价值,依据SQ和FFAs的结构及代谢特点可以更有针对性的开发化妆品,尤其是与皮肤脂质成分相关的化妆品原料和配方的开发。

1. SQ

基于SQ的高度不饱和及其在皮脂腺脂质中特异性存在的特点,SQ可作为生物标志物用于高度敏感地表征皮肤所经受的氧化压力,SQOOH也已被广泛证明是皮肤对环境应激反应的关键介质。因此在化妆品研发中可建立体外试验平台,通过测定SQ氧化速率或SQOOH含量及生成速率,来筛查能够预防或控制SQ氧化或减少其氧化产物损伤的活性成分或终产品。基于角鲨烯氧化过程,可以从猝灭单线态氧、清除自由基以中止SQ氧化链反应、分解SQOOH及清除SQOOH诱导的过多自由基、细胞因子和炎症因子等多种途径降低角鲨烯氧化所引起的皮肤持续氧化、炎症损伤。

2.FFAs

皮肤亚健康或病变状态,常伴随微生态菌群失衡及FFAs组成、含量异常,通过调控皮肤表面微生态及脂质组成来改善皮肤的亚健康状态,是化妆品研发的可能思路。虽然不同种族、性别、饮食习惯等人群皮肤微生物和FFAs组成存在较大个体差异,但随着研究的深入,预计可通过选择性的添加相应链长/不饱和度的FFAs或其他有特异性抑菌作用的活性成分来定向抑制致病菌的生长、维护皮肤微生态平衡,从而增强皮肤屏障保持皮肤健康状态。

Table 1.
The lipid composition of various sources of adult human skin (wt%)
Compositions Sebaceous gland lipid (from sebaceous glands) Epidermal lipid (from epidermal cells) SSLs
Squalene 12 <0.5 10
Wax esters 23 0 22
Triacyl glycerols 60 10 25
Di- and monoacyl glycerols 0 10 10
Sterol esters <1 10 2.5
Sterols 0 20 1.5
Free fatty acids 0 10 25
Glyco- and phospholipids 0 30 0
Others 5 10 4

SSLs, skin surface lipids.

References

Addy J, Oliphant T, Harper R. A botanically derived skin surface lipid mimetic based on the composition of healthy 22-year-old females. Journal of Cosmetic Science 68: 59-67. 2017.
pmid
Blaak J, Dähnhardt D, Dähnhardt-Pfeiffer S, Bielfeldt S, Wihelm KP, Wohlfart R, Staib P. A plant oil-containing pH 4 emulsion improves epidermal barrier structure and enhances ceramide levels in aged skin. International Journal of Cosmetic Science 39: 284-291. 2017.
crossref pmid
Boussouira B, Pham DM. Squalene and skin barrier function: from molecular target to biomarker of environmental exposure. In: skin stress response pathways. In: Wondrak G, ed. Springer. Switzerland. pp29-48. 2016.

Cannavò SP, Guarneri F, Giuffrida R, Aragona E, Guarneri C. Evaluation of cutaneous surface parameters in psoriatic patients. Skin Research and Technology 23: 41-47. 2017.
crossref pmid
Dawson TL Jr. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. Journal of Investigative Dermatology Symposium Proceedings 12: 15-19. 2007.
crossref
De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators of Inflammation 2010: 321494, 2010.
crossref pdf
Ekanayake Mudiyanselage S, Hamburger M, Elsner P, Thiele JJ. Ultraviolet A induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. Journal of Investigative Dermatology 120: 915-922. 2003.
crossref pmid
Feingold KR. Lamellar bodies: the key to cutaneous barrier function. Journal of Investigative Dermatology 132: 1951-1953. 2012.
crossref pmid
Gruber F. The skin lipidome under environmental stress: technological platforms, molecular pathways and translational opportunities. In: skin stress response pathways. In: Wondrak G, ed. Springer. Switzerland. pp1-28. 2016.

He CD, Liu WD, Zhang XJ. The foundation of modern dermatology. People's Medical Publishing House. Beijing. pp285-287. 2010.

Iwase T, Uehara Y, Shinji H, Taijima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465: 346-349. 2010.
crossref pmid pdf
Jin XJ, Cheng S, Chen Z, Kim EJ, Chung JH, Yang XM. Effects of triglycerides metabolism on HaCaT cells after ultraviolet radiation and its possible mechanism. Progress in Modern Biomedicine 14: 6454-6459. 2014.

Kendall AC, Pilkington SM, Massey KA, Sassano G, Rhodes LE, Nicolaou A. Distribution of bioactive lipid mediators in human skin. Journal of Investigative Dermatology 135: 1510-1520. 2015.
crossref pmid
Lohan SB, Müller R, Albrecht S, Mink K, Tscherch K, Ismaeel F, Lademann J, Rohn S, Meinke MC. Free radicals induced by sunlight in different spectral regions: in vivo versus ex vivo study. Experimental Dermatology 25: 380-385. 2016.
crossref pmid
Man MQ, Xin SJ, Elias PM. Skin surface pH and its clinical implication. The Chinese Journal of Dermatovenereology 21: 503-505. 2007.

Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. Journal of Investigative Dermatology 130: 985-994. 2010.
crossref pmid
Nazzaro-Porro M, Passi S, Picardo M, Mercantini R, Breathnach AS. Lipoxygenase activity of Pityrosporum in vitro and in vivo. Journal of Investigative Dermatology 87: 108-12. 1986.
crossref pmid
Ní Raghallaigh S, Bender K, Lacey N, Brennan L, Powell FC. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. British Journal of Dermatology 166: 279-287. 2012.
crossref pmid
Niki E. Lipid oxidation in the skin. Free Radical Research 49: 827-834. 2015.
crossref pmid
Nicolaides N. Skin lipids their biochemical uniqueness. Science 186: 19-26. 1974.
crossref pmid
Oh MJ, Nam JJ, Lee EO, Kim JW, Park CS. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions. Archives of Dermatological Research 308: 563-574. 2016.
crossref pmid pdf
Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis CC, Picardo M. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. Journal of Investigative Dermatology 126: 2430-2437. 2006.
crossref pmid
Pappas A, Fantasia J, Chen T. Age and ethnic variations in sebaceous lipids. Dermato-endocrinology 5: 319-324. 2013.
crossref pmid pmc
Pham DM, Boussouira B, Moyal D, Nguyen QL. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies. International Journal of Cosmetic Science 37: 357-365. 2015.
crossref pmid
Picardo M, Zompetta C, De Luca C, Cirone M, Faggioni A, Nazzaro-Porro M, Passi S, Prota G. Role of skin surface lipids in UV-induced epidermal cell changes. Archives of Dermatological Research 283: 191-197. 1991.
crossref pmid
Plichta JK, Holmes CJ, Gamelli RL, Radek KA. Local burn injury promotes defects in the epidermal lipid and antimicrobial peptide barriers in human autograft skin and burn margin: implications for burn wound healing and graft survival. Journal of Burn Care & Research 38: 212-226. 2017.
crossref
Rissmann R, Oudshoorn MH, Kocks E, Hennink WE, Ponec M, Bouwstra JA. Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids. Biochimica et Biophysica Acta-Biomembranes 1778: 2350-2360. 2008.
crossref
Shimizu N, Ito J, Kato S, Otoki Y, Goto M, Eitsuka T, Miyazawa T, Nakagawa K. Oxidation of squalene by singlet oxygen and free radical results in different compositions of squalene monohydroperoxide isomers. Scientific Reports 8: 9116. 2018.
crossref pmid pmc pdf
Shi VY, Leo M, Hassoun L, Chahal DS, Maibach HI, Sivamani RK. Role of sebaceous glands in inflammatory dermatoses. Journal of the American Academy of Dermatology 73: 856-863. 2015.
crossref pmid
Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Seminars in Immunology 25: 370-377. 2013.
crossref pmid pmc
Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology 211: 240-248. 2005.
crossref pmid
van Smeden J, Janssens M, Kaye EC, Caspers PJ, Lavrijsen AP, Vreeken RJ, Bouwstra A. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Experimental Dermatology 23: 45-52. 2014.
crossref pmid
Wanke I, Steffen H, Christ C, Krismer B, Götz F, Peschel A, Schaller M, Schittek B. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. Journal of Investigative 131: 382-390. 2011.
crossref
Editorial Office
No. 1505, 1506, 3rd Ace High-End Tower, 145, Gasan digital 1-ro, Geumcheon-gu, Seoul 08506, Korea
TEL: +82-2-6957-8155   FAX: +82-502-770-2278   E-mail: ajbc.edit@e-ajbc.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © Korea Institute of Dermatological Sciences.                 Developed in M2PI