| Home | E-Submission | Sitemap | Contact us |  
top_img
Asian J Beauty Cosmetol > Volume 17(3); 2019 > Article
고지대식물의 노화방지화장품으로서의 응용

요약

식물 유래 기능성 성분은 화장품 원료의 중요한 부분으로 업계에서 점차적으로 인정받고 중요시하고 있다. 그 중에서 고지대 식물은 고유한 성장 환경으로 인해 역전 방지, 산화 방지 및 자외선 차단과 같은 생물학적 특성이 부여되며 노화 방지 화장품 원료의 개발에 응용될 수 있다. 본 연구는 Rhodiola rosea, Polygonatum kingianum, Camellia reticulataAnthriscus sylvestris를 포함한 21 개 종류의 고지대 식물을 요약했으며, 고지대식물의 원천 식물, 서식지 특성 및 지리적 분포, 주요 기능성 물질 성분 및 생물 활성 효능을 요약하였고, 또한 화장품 시장에의 응용현황 등을 요약하였다. 또한 노화 방지 화장품 개발에 고지대식물의 잠재력에 대한 전망을 요약하였다.

Abstract

Plant-originated functional ingredients are important parts of cosmetic raw materials. Due to their unique growth environment, high-altitude plants be given biological characteristics such as anti-reverse, anti-oxidation and anti-ultraviolet radiation, and their effective material basis can be applied to the development of anti-aging cosmetic raw materials. This article summarized 21 high-altitude plants including Rhodiola rosea, Polygonatum kingianum, Camellia reticulata and Anthriscus sylvestris, including their source plants, habitat characteristics and geographical distribution, main functional substance components and bioactive effects, and review their cosmetics market performance. We also prospects for the potential of high-altitude plants in anti-aging cosmetics development.

中文摘要

从天然植物中提取有效功效成分作为化妆品原料已经越发得到业内认可和重视。其中,高海拔植物因其独特的生长环境形成了抗逆、抗氧化和抗紫外辐射等生物特性,其有效物质基础能够运用于延缓衰老类化妆品功效原料的开发当中。本文通过对大花红景天、滇黄精、滇山茶、峨参在内的21种高海拔植物进行综述,归纳总结其基源植物、生境特征和地理分布、主要功效物质成分及其作用,化妆品市场应用现状;并对高海拔植物来源的功效性成分在延缓衰老化妆品开发中的发展前景做出了展望。

Introduction

我国正在步入老龄化社会,老龄化被公认是机体的修复潜能它所遭受的伤害频率和强度之间失去平衡。皮肤作为人体表面最大的器官,同样也是因暴露于环境中而受伤害最多的器官。皮肤的逐步老化,功能削弱或丧失,不但影响美观,并且会增加多种皮肤疾病的发生率。伴随经济发展、社会进步,人们愈发重视外在形象,加上皮肤由于其浅表外露性所具有的较强的心理效应,延缓皮肤衰老逐渐成为人们关注的热点之一,也成为近年来医学及生理学相关研究的热点(Dzwigatowska et al., 2013)。根据衰老学说可将抗衰化妆品功效分为以下几点:1.通抗添加氧化剂来削弱自由基对皮肤的损伤,并对皮肤免疫进行调节进而完成自我保护作用;2. 通过抑制MMP表达,或促进TIMP表达来保持真皮层结构;3.通过使用防晒剂,有效防止紫外线对皮肤物质伤害(Xie et al., 2015)。
安全、健康、有效是当前绿色消费潮流的主张,并已深刻影响到日用化学工业等领域的产品开发上的理念与行动。在极力解除或降低化学制品副作用的开发中,具有副作用小、安全性高、多种活性功效等特点的植物活性成分深受绿色产品研发的重视与消费者的青睐,如化妆品中植物添加成分越来越多。我国由于具有丰富的植物资源,开发植物化妆品特别是药用植物化妆品具有独特的优势(Kang, 2017)。药用植物提取物作为美容护肤化妆品的添加剂,具有功效稳定持久,且无毒副作用的优势,深受消费者的青睐。对于抗衰老化妆品的开发而言,以药用植物为原料的抗衰老化妆品相比化学抗衰老成分,因其具有安全、温和、高效、持久等优点,已经成为研发的热点。例如番红花、人参、月季等,都能够有效的清除自由基或者是抑制MMP的表达从而起到抗衰的功效(Shan et al., 2015)。
气候变化是影响生物进化、顺应与发展的重要因素之一。在科学价值和生产实践方面,高海拔植物对高寒低温、缺氧干旱、强烈的太阳辐射和紫外线等极端环境胁迫的响应和适应性都具有重要意义。长期忍耐冰点以下低温胁迫而又不受损伤的生理生态适应特性已引起科学家的极大兴趣(Bano et al., 2014)。尽管地处环境条件恶劣,但高海拔植物仍表现出对不利环境条件的适应性,如光合作用等生命过程的正常进行,这大概与其体内的抗氧化体系的有效运行有很大关系。高海拔地区的低气压、低氧分、高紫外线辐射以及寒冷的气候特征,为处在该地区的植物提供了天然的抗逆环境。因此高海拔地区的植物大多数具有主动抵抗外界压力源的能力,具有能够适应不良环境的生理学特性及生成有效抵抗外界环境的次生代谢产物类群。诸多实验表明,随着海拔升高,植物受到的过氧化伤害及紫外线伤害均在不断加剧,高海拔植物往往具有较高的类胡萝卜素含量用于抵抗高强度的UV-B辐射(Sharma et al., 2016)。
本文总结了已使用化妆品原料名称目录(2015版)植物来源,并对照《中国植物志》及《泛喜马拉雅植物志》项目数据库进行查询比对,确定记录的21种高海拔植物。对其植物基源、生境分布、主要成分、生物活性及在化妆品市场的应用进行综述。

Origin and distribution of high-altitude plants

经文献调研出21种具有延缓衰老功效的高海拔植物,基本信息见Table 1(Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, 1977)。国内高海拔植物主要分布在云南、西藏、四川等地,高山火绒草、欧洲越桔、欧白英分布在欧洲地区。21种高海拔植物中唇形科3种,景天科2种,菊科2种,其余科较分散。其中唇形科,为多年生至一年生草本,以富含多种芳香油而著称,是一世界性分布较大的科。景天科,为草本、半灌木或灌木,我国有10属242种。菊科,为草本、亚灌木或灌木,种类繁多,许多种类富于经济价值。

Main chemical constituents and biological activities of high-altitude plants

高海拔植物含有黄酮类、多糖类、酚类、三萜类、生物碱类、苷类等主要化学成分,其生物活性主要集中于清除自由基、抗氧化、抗菌、抗炎上,除此之外另有抗过敏、抗辐射、美白等效用,见Table 2

1. Free radical scavenging and anti-oxidant activity

1) Flavonoids

Choe et al.(2012)从高山红景天根中分离出8种化合物,在LPS刺激的Raw 264.7细胞中进行的DPPH自由基清除测定,NBT超氧化物清除和一氧化氮产生抑制活性实验证明其主要活性成分是草甘膦糖苷,并且具有良好抗氧化性能,另一种活性成分山奈酚则具备抗炎性能。Rahman et al.(2006)检测15种纯化的越桔花青素及花葵素-3-O-桔花青素吡喃葡糖苷、4'-O-甲基飞燕草素-3-O-素花青素吡喃葡糖苷的O2-和ONOO-的清除活性,对其在混合物中的协同作用和构效关系进行研究。证明4'-OH的甲基化显着降低了花色素苷的抗氧化活性。Shi et al.(2017)通过利用不同表面活性剂提取沙棘叶中黄酮并测定其抗氧化能力,结果得到黄酮粗提液对超氧阴离子自由基、羟自由基、DPPH自由基有明显的清除作用。皂草苷类和异甘草苷类是滇龙胆中黄酮类物质的主要组成成分。Phan et al.(2011)通过DPPH•自由基清除试验得到皂草苷与异皂草苷具有抗氧化作用。Kumarasamy et al.(2002)通过筛选欧活血丹地上部分的正己烷、二氯甲烷、甲醇提取物,并进行DPPH•自由基清除试验,结果有显著清除自由基活性,推测是其中黄酮成分在起作用。Taleb-Senouci et al.(2009)通过链脲佐菌素(streptozotocin, STZ)诱导的糖尿病大鼠模型对筋骨草水提取物的抗氧化作用进行研究,结果表明筋骨草水提取物能够通过减弱脂质过氧化和加强糖尿病大鼠血浆,红细胞和组织中的抗氧化酶活性来改善抗氧化状态。

2) Polysaccharides

Wu (2013)利用比色法证明升麻多糖具有良好的清除羟基自由基的能力,并且具有抗氧化作用。Chen et al.(2006)研究发现虫草多糖能明显提高肝脏、脑组织中的谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、超氧化物歧化酶(superoxide dismutase, SOD)活性,以及血清中的SOD活性,从而抑制H22肿瘤。

3) Phenols

Viljanen et al.(2004)针对乳清蛋白–脂质体系,研究了几种植物浆果的酚类物质的抗氧化活性,结果表明黑果越桔(即欧洲越桔)有很好的抗氧化活性。

4) Extracts

Wang et al.(2013)通过建立阿尔茨海默病(Alzheimer's disease, AD)大鼠模型,研究黄精水煎剂(polygonatum cyrtonema decoction, PCD)对β对淀粉样蛋白(1β)的保护作用及机制,结果发现PCD对学习记忆能力有显著的保护作用,这可能与其减少海马内P-tau-thr231水平和消除组织氧化逆境有关。Meeprom et al.(2015)研究发现升麻根茎中的异阿魏酸能够清除自由基,由此防止丙酮醛引起的蛋白糖化和氧化性DNA损伤。Shen & Qian (2006)从藏红花中分离出红花酸,研究其作为抗氧化剂对去甲肾上腺素(norepinephrine, NE)诱导的心肌肥厚的保护作用。结果证明红花酸能显著降低脂质过氧化(lipid peroxide, LPO)含量,增加心肌肥厚中GSH-Px和SOD活性,并显著改善NE诱导的心肌病理组织学改变。

2. Anti-inflammatory and antibacterial activity

1) Flavonoids

Ming et al.(2005)通过金黄色葡萄球菌(Staphylococcus aureus)抑制实验,发现红景天地下部分的甲醇提取物显示出对金黄色葡萄球菌的抑制活性。雪莲主要成分黄酮具有抗炎、镇痛、消肿的作用,蔡绍晖等(Cai et al., 1999)通过二甲苯所致小鼠耳部炎症模型,证明复方雪莲烧伤膏有很好的抗炎作用,其效果与皮炎平相当。

2) Polysaccharides

Su et al.(2007)通过滤纸片抑菌圈实验法研究黄精多糖对几种常见细菌的抑制作用,结果发现对于实验的常见细菌,黄精多糖均表现出有明显的抑制作用,其中对大肠杆菌的抑制作用最弱,对金黄色葡萄球菌抑制作用最强。

3) Triterpenes

香树素是滇龙胆中重要的三萜类成分之一,Medeiros et al.(2007)通过研究α过香树素对小鼠的12-O-十四烷酰佛波醇-13-乙酸酯(12-O-tetradecanoylphorbol-13-acetate, TPA)诱导的皮肤炎症发挥的作用,结果表明α症香树素对TPA诱导的局部皮肤炎症能够快速起到抑制作用。

4) Alkaloids

Mansoor et al.(2000)实验证明滇龙胆中已知的生物碱类化合物基本无毒无害。Bibi et al.(2006)通过菌落实验发现龙胆碱对金黄色葡萄球菌、酿脓链球菌(Streptococcus pyogenes)有明显灭菌作用,对大肠埃希菌(Escherichia coli),伤寒杆菌(Salmonella typhi),普通变形杆菌(Proteus vulgaris),克雷伯氏肺炎杆菌(Klebsiella pneumonia)具有较低抑菌活性。

5) Glycosides

Wu et al.(2001)研究发现欧白英中的甾体皂苷有抗真菌作用,对金黄色葡萄球菌、痢疾杆菌(Shigella Castellani)、绿脓杆菌(Pseudomonas aeruginosa)和伤寒杆菌也有抑制作用。

6) Extracts

Burdulis et al.(2009)通过测试8种革兰阴性菌和革兰阳性菌株的抗菌活性,发现欧洲越桔提取物的主要成分花青素,对弗氏柠檬酸杆菌(ATCC8090)和粪肠球菌(ATCC29212)最敏感。Kumarasamy et al.(2002)通过欧活血丹的甲醇萃取物的抑菌实验发现,该提取物可抑制金黄色葡萄球菌、大肠杆菌、绿脓杆菌、枯草杆菌(Bacillus subtilis)等14种细菌。其中对微球菌(Micrococus luteus)的抑制活性最强。Liu et al.(2004)通过抗真菌实验,测定最小抑菌浓度(minimum inhibitory concentration, MIC)值,表明白桦皮和白桦叶的提取物均有抗真菌活性,且白桦皮和白桦叶中均具有抗农、林业病害真菌的活性成分。Gautam et al.(2011)在TPA诱导的小鼠耳水肿测定中评估70%乙醇的筋骨草提取物的抗炎活性,该提取物可抑制COX-1和COX-2酶活性,具有良好抗炎活性。Liu & Yang (2004)通过急性炎症模型和慢性炎症模型,证明素馨花(即素方花)的乙醇提取物的抗炎作用,将给小鼠注射二甲苯诱导水肿,作为急性炎症模型;给大鼠皮下植人棉团产生肉芽肿作为慢性炎症模型,结果发现提取物对这2种炎症模型都有抗炎作用,且活性与剂量呈正相关。Zhao et al.(2008)通过Kirby-Baue纸片扩散法测定紫草不同浓度的醇提物和水提物体外抑菌作用,用二甲苯致小鼠耳部肿胀法测定其抗炎作用。结果表明不同浓度的紫草醇提物和水提物具有较强的抗炎抑菌作用,80%的乙醇提取物对金黄色葡萄球菌、福氏Ⅱ型杆菌(Shigella flexneri II)、无乳链球菌(Streptococcus agalactiae)的抑制作用最强,且紫草醇提物的抗炎效果好于水提物。Jiang et al.(2012)利用MH琼脂和血琼脂培养基,对极性萃取法得到的火绒草提取物进行体外抑菌活性实验,实验结果表明火绒草提取物对大肠埃希氏菌、铜绿假单包菌、金黄色葡萄球菌、化脓链球菌(Streptococcus)等有明显的抑制作用。

3. Anti-allergic activity

Kim & Lee (1998)通过考查白英醇提取物对DNP IgE诱导的皮肤过敏反应的作用,表明它可抑制抗DNP IgE或P物质诱导的肥大细胞过度释放组胺,抑制P物质诱导组胺脱羧酶mRNA的过度表达。Shen et al.(1998)通过研究小通草(即喜马山旌节花)多糖对DNCB所致小鼠迟发性过敏反应的影响,发现其对DNCB所致小鼠迟发性过敏反应有抑制作用。峨参内酯(anthricin)是峨参的主要功效物质,为木脂素类物质。Lin et al.(2004)通过小鼠腹膜内给药和静脉给药,研究峨参内脂对小鼠被动性皮肤过敏反应的影响,发现峨参内酯通过抗DNP IgE抗体抑制PCA反应活性具有剂量依赖性。

4. Inhibit melanin activity

Chen et al.(2012)通过分析20个红景天属植物样品的酪氨酸酶及Aβ42聚集抑制活性,证明该属植物的原花青素可能为抑制酪氨酸酶及A能为抑聚集的主要活性成分,推测可抑制黑色素生成。Yoshikawa et al.(2009)通过研究ADP加速血液转移的作用,表明虫草素通过阻断体内ADP诱导的血小板聚集,对B16-F1黑色素瘤细胞的造血转移具有抑制作用。

5. Others

1) Phenols

Svobodová et al.(2008)通过UVA损伤的HaCaT角质形成细胞,评估欧洲越桔提取物的潜在UVA预防效果,结果发现用欧洲越桔提取物预处理后的HaCaT导致UVA引起的损伤减弱。

2) Iridoid glycosides

滇龙胆中的环烯醚萜苷类成分,可与龙胆苦苷进行生物学转化。Oztürk et al.(2006)以家养小鸡胚胎的成纤维细胞作为实验对象,以右泛醇为对照,结果发现该类成分可通过刺激细胞有丝分裂,促进伤口愈合,协同龙胆苦苷对细胞起到保护作用。

3) Water extracts

Guo et al.(2010)以辐射损伤小鼠作为研究对象,研究苞叶雪莲水提物对小鼠生殖细胞的辐射防护作用,给予小鼠苞叶雪莲水提物灌胃后X射线照射,测量其精子畸形率。结果证明苞叶雪莲水提物对小鼠的生殖细胞有一定程度的防辐射损伤作用。Liu et al.(2006)发现中草药冬虫夏草的口服热水提取物有清除自由基的功效,可保护全身照射(TBI)后的小鼠骨髓和肠道损伤。Pang et al.(2009)评价含野生滇山茶花提取物医学护肤品辅助治疗干燥性皮炎的效果,分别对干燥性皮炎受试者使用前后两侧皮肤进行皮损恢复情况进行测定。结果证明该含有野生滇山茶花提取物的防干裂护肤品可辅助治疗干燥性皮炎。
综上高海拔植物主要成分、生物活性,结合高海拔地区的低气压、低氧分、高紫外线辐射以及寒冷的气候特征,可为处在该地区的植物提供天然的抗逆环境,由此证实了高海拔植物的独特生物活性与所处环境的紧密联系。

Application of high-altitude plants in cosmetics

目前市面上化妆品的功效宣传,还能够和药理药效作用相对应。伴随化妆品市场发展,各大化妆品品牌逐渐认识到高海拔植物的应用潜力,进行高海拔植物化妆品原料的开发与利用。目前市场宣称其具有保湿滋润、抗氧化、美白、抗衰、改善细纹等多重功效,其中以抗氧化作用为主。

1. Anti-oxidant effects

Fan et al.(2018)通过网络药理学研究发现大花红景中的红景天苷、儿茶素、没食子酸乙酯等具有抗氧化作用。火绒草醇提物乙酸乙酯部位有还原力,能有效浓缩抗氧化的活性物,具有清除羟基自由基和亚硝酸盐的活性(Wu et al., 2013)。作为中国的珍贵中药材,冬虫夏草具有抗肿瘤、抗氧化、抗菌、免疫调节等功效(Yan et al., 2014)。红景天有“高原人参”的美称,其有效成分红景天苷具有清除活性氧自由基(ROS)、抗疲劳、增强免疫力、抗肿瘤等药理活性(Li et al., 2017)。Zhang & Wu (2019)综述表明沙棘黄酮可以防止紫外线所引起的氧化损伤,具有较好的自由基清除作用,可减少活性氧生成,保护细胞活性。具有抗氧化功效的高山植物化妆品有相宜本草红景天莹透幼白面霜、后天气丹君花献滋养液、羽西虫草焕颜新肌日霜、植物医生红景天紧致弹嫩隐形面膜、ORGINS韦博士灵芝焕能精华水、法兰琳卡维C沙棘套装等。

2. Moisturizing function

滇山茶籽油是化妆品用植物油之一,与皮肤易融合,有保湿、滋润皮肤的功效 。滇山茶花提取物,富含山茶多酚,补水、保湿、润泽肌肤的功效。白桦树汁也有补水舒缓的功效。
具有补水保湿功效的高山植物化妆品有植物医生山茶悦泽系列、薇诺娜紧致淡纹精华霜、雪花秀水律面霜柔肤水套装等。

3. Whitening skin effects

Mullauer et al.(2011)等发现白桦脂酸及其衍生物对黑色素瘤细胞具明显的细胞毒性, 能有效地抑制其生长, 且毒副作用小。素方花中茉莉黄酮有美白功效。具有美白功效的高山植物化妆品有科颜氏淡斑精华液、植物医生雪莲无瑕系列等。

4. Barrier repair

Zheng et al.(2017)研究表明绵头雪莲花提取物对UVA照射人成纤维细胞具有一定的保护作用,表明可能具有晒后修复作用。高山火绒草,能起到修复肌肤屏障作用。具有屏障修复功效的高山植物化妆品有自然堂雪域精粹纯粹滋润乳液、植物医生雪莲无瑕系列、欧束高山火绒草沁润修护系列等。

5. Others

Pang et al.(2009)在滇虹润芙防干裂护肤品系列产品-抗裂护唇精华中加入野生滇山茶花提取精华油,发现对慢性唇炎有辅助治疗作用,且安全性好。
调研发现,目前市场上已经有很多品牌将高海拔植物作为功效原料,主要功效集中在抗氧化和补水保湿,还有少数美白、屏障修护,但强调“高海拔植物”概念的品牌较少,缺乏对高海拔植物生长环境独特性和生物活性优势性的解读。

Conclusion

高海拔地域低温、强UV-B辐射、高寒缺氧的环境条件,使得长时间处在这种极端生态环境下的植物在长期自然选择和自身遗传变异作用下,这些植物细胞中能够抵抗恶劣气候条件的代谢产物含量升高,并且其中含有的活性物质(如黄酮类、萜类、酚类等)也较高。高海拔植物的这种抗逆、抗氧化、抗紫外辐射等生理特性及其有效的物质基础,能够加以利用到延缓衰老化合物原料的筛选和开发利用中来。目前化妆品市场已有数十种品牌应用高海拔植物原料,但缺乏对其药理活性与作用机理的阐释。
若能把高海拔植物药理活性与机理研究结合,避免概念添加,深度挖掘其独特优势,将会进一步推动高海拔植物在化妆品市场的发展,也为化妆品原料市场注入新鲜能量。

Table 1.
21 high-altitude plants with anti-aging effects
Latin name (Chinese name) Family & Genus Elevation (m) Distribution
Rhodiola crenulata (HK. f. et Thoms.) H. Ohba (大花红景天) Crassulaceae, Rhodiola 2800-5600 Tibet, Northwest Yunnan, Western Sichuan
Polygonatum kingianum (滇黄精) Liliaceae, Polygonatum 700-3600 Yunnan
Camellia reticulata Lindl. (滇山茶) Theaceae, Camellia 2200-3200 Yunnan
Anthriscus sylvestris (L.) Hoffm. Gen. (峨参) Umbelliferae, Anthriscus 4500 Liaoning, Henan, Hubei, Hunan, Sichuan
Gentiana rigescens Franch. ex Hemsl. (滇龙胆) Gentianaceae, Gentiana 1000-3000 Guizhou, Yunnan, Tibet
Cimicifuga foetida L. (升麻) Ranunculaceae, Cimicifuga 1700-2300 Liaoning, Jilin, Heilongjiang, Hebei, Shan Xi, Shanxi, Sichuan, Qinghai
Jasminum officinale L. var. officinale L. (素方花) Oleaceae, Jasminum 1800-3800 Sichuan, Southwest Guizhou, Yunnan, Tibet
Gastrodia elata Bl. (天麻) Orchidaceae, Gastrodia 1000- China, Nepal, Bhutan
Stachyurus himalaicus Hook. f. et Thoms ex Benth. (喜马拉雅旌节花) Stachyuraceae, Stachyurus 1500-2900 Tibet, Northwest Yunnan, West Sichuan
Betula platyphylla Suk. (白桦) Betulaceae, Betula 1300-2700 Daxinganling and Xiaoxinganling mountains, Changbai mountains, alpine area in north China
Leontopodium alpinum (高山火绒草) Compositae, Leontopodium 1700- The Alps in Asia and Europe
Solanum dulcamara L. (欧白英) Solanaceae, Solanum 3000-3300 Northwest Yunnan, Southwest Sichuan, Europe, Siberia
Glechoma hederacea L. (欧活血丹) Labiatae, Glechoma 2000-2900 Xinjiang
Vaccinium myrtillus Linn. (欧洲越桔) Ericaceae, Vaccinium 2200-2500 Europe, Russia, northern Asia, North America (USA and Canada) and Alps
Crocus sativus L. (番红花) Iridaceae, Crocus 5000- Tibet
Cordyceps sinensis (BerK.) Sacc. (冬虫夏草) Clavicipitaceae 5000- Tibet
Rhodiola rosea L. (红景天) Crassulaceae, Rhodiola 1800 diola Tibet, Xinjiang
Hippophae rhamnoides L. (沙棘) Elaeagnaceae, Hippophae 800-3600 Qinghai, Gansu
Ajuga ciliata Bunge (新疆筋骨草) Labiatae, Ajuga 2500-4800 Xinjiang
Arnebia euchroma (Royle) Johnst. (新疆紫草) Boraginaceae, Arnebia 2500-4200 Xinjiang
Saussurea involucrata (Kar. et Kir.) Sch.-Bip. (雪莲花) Compositae, Saussurea 4300- Tibet
Table 2.
Main chemical constituents and biological activities of high-altitude plants
Chemical constituents Biological activity Latin name (Chinese name)
Flavonoids Scavenging free radical, antioxidation, Rhodiola rosea L. (红景天), Hippophae rhamnoides L. (沙棘), Gentiana rigescens Franch. ex Hemsl. (滇龙胆), Glechoma hederacea L. (欧活血丹), Vaccinium myrtillus Linn. (欧洲越桔), Ajuga ciliata Bunge (新疆筋骨草)
Anti-inflammatory, antibacterial Rhodiola rosea L. (红景天),Saussurea involucrata (Kar. et Kir.) Sch.-Bip. (雪莲花)
Phenols Scavenging free radical, antioxidation Vaccinium myrtillus Linn. (欧洲越桔)
Anti-inflammatory, antibacterial Betula platyphylla Suk. (白桦), Vaccinium myrtillus Linn. (欧洲越桔)
Triterpenes Anti-inflammatory, antibacterial Gentiana rigescens Franch. ex Hemsl. (滇龙胆)
Anti-oxidation Ajuga ciliata Bunge (新疆筋骨草)
Polysaccharides Anti-inflammatory asminum officinale L. var. officinale L. (素方花)
Anti-oxidation Cimicifuga foetida L. (升麻), Cordyceps sinensis (BerK.) Sacc. (冬虫夏草)
Antibacterial Polygonatum kingianum(滇黄精)
Anti-allergy Stachyurus himalaicus Hook. f. et Thoms ex Benth. (喜马拉雅旌节花)
Glycosides Antibacterial Solanum dulcamara L. (欧白英)
Lactones Anti-allergy Anthriscus sylvestris (L.) Hoffm. Gen.(峨参)
Alkaloids Anti-inflammatory, analgesia Gentiana rigescens Franch. ex Hemsl. (滇龙胆)
Cordycepin Inhibit melanin Cordyceps sinensis (BerK.)Sacc. (冬虫夏草)
Iridoid glycosides Promote wound healing Gentiana rigescens Franch. ex Hemsl. (滇龙胆)
Extracts Scavenging free radical, anti-oxidation, Polygonatum kingianum(滇黄精), Cimicifuga foetida L.(升麻), Crocus sativus L. (番红花)
Anti-inflammatory, antibacterial Vaccinium myrtillus Linn. (欧洲越桔), Glechoma hederacea L. (欧活血丹), Betula platyphylla Suk. (白桦), Ajuga ciliata Bunge (新疆筋骨草), Jasminum officinale L. var. officinale L. (素方花), Arnebia euchroma (Royle) Johnst. (新疆紫草), Leontopodium alpinum (高山火绒草)
Anti-allergy Solanum dulcamara L. (欧白英)
Inhibit melanin Rhodiola rosea L. (红景天)
Moisturize the skin Camellia reticulata Lindl. (滇山茶)
Radioresistance Saussurea involucrata (Kar. et Kir.) Sch.-Bip. (雪莲花), Cordyceps sinensis (BerK.)Sacc. (冬虫夏草)

References

Bano A, Ahmad M, Ben Hadda T, Saboor A, Sultana S, Zafar M, Khan MP, Arshad M, Ashraf MA. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. Journal of Ethnobiology and Ethnomedicine 10: 43. 2014.
crossref pmid pmc
Bibi H, Ali I, Sadozai SK. Phytochemical studies and antibacterial activity of Centaurium pulchellum Druce. Natural Product Research 20: 896-901. 2006.
crossref pmid
Burdulis D, Sarkinas A, Jasutiené I, Stackevicené E, Nikolajevas L, Janulis V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium cormbosum L.) fruit. Acta Poloniae Pharmaceutica 66: 399-480. 2009.
pmid
Cai SH, Tang Qiong, Chen JY, Liu YB, Zhu L. Study on promoting action of wound healing and antiinflammation action of compound xuelian burning wound qintment (Saussurea laniceps Hand-Mazz, Crocus sativus L.etc.). Chinese Traditional Patent Medicine 21: 243-245. 1999.

Chen BF, Yang YF, Zhang YT. Inhibitory effects of Rhodiola plants and their oligomeric proanthocyanidins on tyrosinase and Aβ42 aggregation. Acta Pharmaceutica Sinica 47: 1440-1446. 2012.
pmid
Chen J, Zhang W, Lu T, Li J, Zheng Y, Kong L. Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sciences 78: 2742-2748. 2006.
crossref pmid
Choe KI, Kwon JH, Park KH, Oh MH, Kim MH, Kim HH, Cho SH, Chung EK, Ha SY, Lee MW. The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis ABOR. Molecules 17: 11484-11494. 2012.
crossref pmid pmc
Taleb-Senouci D, Ghomari H, Krouf D, Bouderbala S, Prost J, Lacaille-Dubois MA, Bouchenak M. Antioxidant effect of Ajuga iva aqueous extract in streptozotocin-induced diabetic rats. Phytomedicine 16: 623-631. 2009.
crossref pmid
Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. Flora reipublicae popularis sinicae. Science Press. Beijing. pp1-80. 1977.

Dzwigatowska A, Solyga-zurek A, Debowska RM, Eris I. Preliminary study in the evaluation of anti-aging cosmetic treatment using two complementary methods for assessing skin surface. Skin Research and Technology 19: 155-161. 2013.
crossref pmid
Fan FF, Guo FF, Zhang W, Zhang Y, Yang HJ, Zhang Y, Li DF, Zhang J, Zhang JJ. Molecular mechanism of Tibetan medicine Rhodiola crenulata prevents oxidative stress through network pharmacology. China Journal of Chinese Materia Medica 43: 1789-1797. 2018.
pmid
Gautam R, Jachak SM, Saklani A. Anti-inflammatory effect of Ajuga bracteosa Wall Ex Benthmediated through cyclooxygenase (COX) inhibition. Journal of Ethnopharmacology 133: 928-930. 2011.
crossref pmid
Guo N, Li WH, Zhang GL, Ding X, Wang CH. Investigation of radioprotective effects of aqueous extract of S. obvallata DC. edgew on sperm of mice. Journal of Radiological Health 19: 394-396. 2010.

Jiang H, Shan GS, Qi Y, Zhao Y, You XM. Study on antibacterial substances in Leontopodium leontopodioides (Willd.) Beauv. Modern Chinese Medicine 14: 6-9. 2012.

Kang HY. Skin care mechanism of traditional Yiqi Chinese herbal medicine and its application in cosmetics. East China Science & Technology 2017: 336. 2017.

Kim HM, Lee EJ. Solanum lyratum inhibits anaphylactic reaction and suppresses the expression of L-histidine decarboxylase mRNA. Immunopharmacology and Immunotoxicology 20: 135-146. 1998.
crossref pmid
Kumarasamy Y, Cox PJ, Jaspars M, Nahar L, Sarker SD. Biological activity of Glechoma hederacea. Fitoterapia 73: 721-723. 2002.
crossref pmid
Li Y, Zhao Y, Li X, Liu T, Jiang X, Han F. Characterization of global metabolic profile of Rhodiola crenulata after oral administration in rat plasma, urine, bile and feces based on UHPLC-FT-ICR MS. Journal of Pharmaceutical and Biomedical Analysis 149: 318-328. 2017.
crossref pmid
Lin CX, Son MJ, Ju HK, Moon TC, Lee E, Kim SH, Kim MJ, Son JK, Lee SH, Chang HW. Deoxypodophyllotoxin, a natural occurring lignin, inhibits the passive cutaneous anaphylaxis reaction. Planta Medica 70: 474-476. 2004.
crossref pmid pdf
Liu WC, Wang SC, Tsai ML, Chen MC, Wang YC, Hong JH, McBride WH, Chiang CS. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiation Research 166: 900-907. 2006.
crossref pmid
Liu Y, Yang J. Chemical constituents and biological activities of iridoids in the Jasminum. World Phytomedicines 19: 234-237. 2004.

Liu Z, Zhang Q, Song L, Hu Y, Li J. Study on the anti-fungal activity of the bark and the leaves of Betula platyphylla. Tianjin Pharmacy 16: 3-4. 2004.

Mansoor A, Zaidi MI, Malghani MAK. Isolation of bioactive alkaloids from Gentiana olivieri and its nontoxic effect. Pakistan Journal of Botany 32: 105-110. 2000.

Medeiros R, Otuki MF, Avellar MC, Calixto JB. Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. European Journal of Pharmacology 559: 227-235. 2007.
crossref pmid
Meeprom A, Sompong W, Suantawee T, Thilavech T, Chan CB. Adisakwattana S. Isoferulic acid prevents methylglyoxal-induced protein glycation and DNA damage by free radical scavenging activity. BMC Complementary Alternative Medicine 15: 346. 2015.
crossref
Ming DS, Hillhouse BJ, Guns ES, Eberding A, Xie S, Vimalanathan S, Towers GH. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytotherapy Research 19: 740-743. 2005.
crossref pmid
Mullauer FB, Van Bloois L, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Shiffelers RM, Kessler JH. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-cancer Drugs 22: 223-233. 2011.
crossref pmid
Oztürk N, Korkmaz S, Oztürk Y, Baser KH. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Medica 72: 289-294. 2006.
crossref pmid pdf
Pang Q, Tu Y, Xu YH, Wang FF, Gao XY, He L. Clinical observation of medical skin care products with the extract of Camellia reticulata in adjuvant therapy of chronic cheilites. Journal of Dermatology and Venereology 31: 9-10. 2009.

Phan VK, Nguyen XC, Nguyen XN, Nquyen XN, Vu KT, Chau VM, Bui HT, Truong NH, Lee SH, Jang HD, et al. Antioxidant activity of a new C-glycosylflavone from the leaves of Ficus microcarpa. Bioorganic & Medicinal Chemistry letters 21: 633-637. 2011.
crossref
Rahman MM, Ichyanagi T, Komiyama T, Hatano Y, Konishi T. Superoxide radical-and peroxynitrite-scavenning activity of anthocyanins, structure-activity relationship and their synergism. Free Radical Research 40: 993-1002. 2006.
crossref pmid
Shan C, Ma S, Zhang W. Application and research progress of new natural peptides in cosmetics. Chinese Wild Plant Resources 34: 30-32. 2015.

Sharma D, Shrestha T, Rapal N, Poudel SC, Shrestha S, Sharma S, Poudel KP, Lamichane J. Screening and bioactivity measurement of high altitude medicinal plants of Nepal. Vegetos-An International Journal of Plant Research 29: 4. 2016.
crossref
Shen XC, Qian ZY. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Die Pharmazie 61: 348-352. 2006.
pmid
Shen YJ, Zeng N, Liu J, Jia MR, Zhang Y, Wei YF, Ma YY. Preliminary study on pharmacological effects of Tetrapanax papyrifer polysaccharides. China Journal of Chinese Materia Medica 23: 741-743. 1998.
pmid
Shi D, Li M, Su N, Sun XT, He RX, Wang CT. Process optimization and anti-oxidation evaluation of total flavonoids from Hippophae rhamnoides L. leaves by surfactant. Hubei Agricultural Sciences 56: 1726-1729. 2017.

Su W, Zhao L, Liu JT, Chen HL, Gong ZQ. Study on bacteriostasis and anti-oxidation of polygonatumsibiricum polysaccharides. Food Science 28: 55-57. 2007.

Svobodová A, Rambousková L, Walterová D, Vostalová J. Bilberry extract reduce UVA-induced oxdative stress in HaCaT keratinocytes: a pilot study. BioFactors 33: 249-266. 2008.
crossref pmid
Viljanen K, Kylli P, Kivikari R, Heinonen M. Inhibition of protein and lipid oxidation in liposomes by berry phenolics. Journal of Agriculture and Food Chemistry 52: 7419-7424. 2004.
crossref
Wang T, Cheng J, Yu Y. Protective effects of Polygonatum cyrtonema decoction on beta-amyloid peptide-induced learning and memory decline in rats. Journal of Anhui Agricultural University 40: 95-99. 2013.

Wu N, Zhan R, Gou P. Anti-oxidation active components and structure analysis from Leontopodium leontopodioides. Natural Product Research and Development 25: 296-301. 2013.

Wu W, Gao Z, Li Y, Ding Y. Chemical constituents and pharmacological activities of Solanum lyratum Thunb. and Solanum dulcamara L.. World Phytomedicines 16: 245-7. 2001.

Wu Yan. Extraction and antioxidant activity of polysaccharides from Cimicifuga foetida. Chinese Journal of Spectroscopy Laboratory 30: 2444-2446. 2013.

Xie YJ, Kong WJ, Yang MH, Yang SH. Research progress of Chinese herbal medicine raw materials in cosmetics. China Journal of Chinese Materia Medica 40: 3925-3931. 2015.
pmid
Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: mycelial fermentation, isolation, structure, and bioactivities: A review. Journal of Functional Foods 6: 33-47. 2014.
crossref
Yoshikawa N, Kunitomo M, Kagota S, Shinozuka K, Nakamura K. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5'-diphosphate. Anticancer Research 29: 3857-3860. 2009.
pmid
Zhang D, Wu GD. Research progress on chemical constituents and pharmacological effects of flavonoids in Hioppophae rhamnoides L. China Pharmacy 30: 1292-1296. 2019.

Zhao XM, Deng W, Li Y, Wang GL, Fei HR, Zhang Y, Chen W. Experimental study on the anti-inflammatory and antibacterial effects of different extracts from Lithospermum erythrorhizon. Lishizhen Medicine and Materia Medica Research 19: 1603-1605. 2008.

Zheng B, Ruan G, Ni M, Lu R, Qu H, Huang X, Li B, Cheng W, Xia Y, Deng D. Effects of Saussurea laniceps on human fibroblasts proliferation affected by UVA irradiation. China Journal of Leprosy and Skin Diseases 33: 531-535. 2017.

Editorial Office
No.306, 244 Beotkkot-ro, Geumcheon-gu, Seoul 08513, Republic of Korea
TEL: +82-70-7707-4346   FAX: +82-502-770-2278   E-mail: ajbc.edit@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © Korea Institute of Dermatological Sciences. All rights reserved.