혈갈의 화학성분 및 약리작용에 관한 연구

Advances in the Study of Chemical Constituents and Pharmacological Effects of Sanguis Draconis

血竭化学成分和药理作用的研究进展

Article information

Asian J Beauty Cosmetol. 2023;21(3):517-531
Publication date (electronic) : 2023 September 26
doi : https://doi.org/10.20402/ajbc.2023.0014
1College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
2Beijing Key Laboratory of Plants Resource Research and Development, Beijing, China
3Beijing Lan Divine Technology Co. LTD, Beijing, China
장영1,2, 요준문1,2, 곽묘묘1,2, 우단3, 리려1,2,
1북경공상대학 화학 및 재료공정학원, 북경, 중국
2북경시식물자원연구개발중점연구실, 북경, 중국
3Beijing Lan Divine Technology Co. LTD, 북경, 중국
*Corresponding author: Li Li, College of Chemistry and Materials Engineering, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China Tel.: +86 10 68987110 Email: lili2212@163.com
Received 2023 February 6; Revised 2023 May 23; Accepted 2023 August 24.

Abstract

기린갈(Daemonorops draco Bl.)의 열매를 조제하여 만든 혈갈(Sanguis Draconis)은 동남아시아의 귀중한 전통약재로, 혈액순환을 활성화 시키고, 통증완화, 어혈과 지혈을 제거하며, 근육성장을 촉진하는 작용이 있다. 주로 외상성 부상, 복통, 외상성 출혈 등에 사용된다. 혈갈의 화학적 구성은 주로 플라보노이드, 디테르페노이드 산 및 기타 유효 성분을 포함한다. 현대 약리학 연구에 의하면 혈갈은 항염증, 항균, 항산화, 항종양, 상처 치유 촉진 등 탁월한 약리 활성을 가지고 있는 것으로 나타났다. 본 총설은 혈갈의 다양한 출처, 화학 성분 및 약리학적 효과에 대한 연구 현황을 종합적으로 정리하고 요약하여 추후 연구에 과학적 근거와 새로운 아이디어를 제공하고자 한다.

Trans Abstract

Sanguis Draconis, the prepared resin of the fruit of Daemonorops draco Bl., is a precious traditional medicine from Southeast Asia. It has the effects of activating blood circulation and calming pain, removing blood stasis and hemostasis, generating muscle and astringeting sores. It is used for traumatic injury, abdominal stasis and pain, traumatic bleeding, etc. The chemical composition of Sanguis Draconis is complex, mainly including flavonoids, diterpenoid acids and other effective components. Modern pharmacological studies show that Sanguis Draconis has excellent pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidant, anti-tumor, promoting wound healing and so on. This paper comprehensively arranges and summarizes the research status of the variety sources, chemical components and pharmacological effects of Sanguis Draconis, so as to provide scientific basis and new ideas for future research of Sanguis Draconis.

Trans Abstract

血竭是棕榈科黄藤属植物麒麟竭(Daemonorops draco Bl.)分泌的红色树脂,是源自东南亚的珍贵药材,具有活血定痛、化瘀止血、生肌敛疮的功效,用于跌打损伤、心腹瘀痛、外伤出血等。血竭中化学成分主要包括黄酮类、二萜酸等,现代药理学研究表明血竭具有优良的抗炎抑菌、抗氧化、抗肿瘤、促进伤口愈合等药理活性。本文对血竭的品种来源、化学成分以及药理作用的研究现状进行了全面的整理和总结,为血竭的研究提供科学依据和思路。

Introduction

麒麟竭(Daemonorops draco Bl.)为棕榈科黄藤属(Daemonorops,Arecaceae)植物,其果实能分泌出红褐色树脂,可作染料和中药“血竭(Sanguis Draconis)”。血竭呈类圆四方形或方砖形,表面暗红,有光泽,附有因摩擦而成的红粉。质地硬而脆,破碎面红色,研粉为砖红色。气微,味淡(Chinese Pharmacopoeia Commission, 2020),具有活血定痛、化瘀止血、生肌敛疮的功效(Zhang et al., 2019)。麒麟竭(D. draco)为血竭的唯一品种来源收入《中华人民共和国药典》。由于麒麟竭价格昂贵,资源珍贵,所以国内常用主要产自广西、云南等地的龙血竭(Resina Draconis)进行替代(Zhao et al., 2015),而龙血竭(D.cochinchinensis)是从百合科龙血树属(DracaenaLiliaceae)植物剑叶龙血树(Dracaena cochinchinensis (Lour.) S. C. Chen)的含脂木质部提取的树脂,其传统功效为止血镇痛与血竭的功效不完全相同,两者不应该混淆使用(Luo et al., 2019)。

血竭的主要化学成分为黄酮类,此外还包括二萜酸等有效成分,其中血竭红素(Dracorubin)、血竭素(Dracorhodin)、血竭树脂鞣醇(Dracoresinotannol)、松香酸(Abietic acid)已经被证明为血竭中的主要活性成分(Wang et al., 2012)。现代药理学研究表明,血竭还具有优良的抗炎抑菌(Kuo et al., 2017Heo et al., 2010Lin et al., 2019)、抗氧化(Sri et al ., 2019)、抗肿瘤(Xia et al., 2005Xia et al., 2006)、促进伤口愈合(Ji et al., 2015Liu et al., 2013)、促进血管生成(Krishnaraj et al., 2019)等药理活性,在疾病治疗方面具有很大潜力。本文对血竭的化学成分和药理作用进行综述,为血竭未来的研究方向提供依据和思路,为研究开发血竭资源提供参考。

Research Progress in Chemical Composition

血竭主要包含有黄酮、二萜酸等成分(Apaza Ticona et al ., 2021)。黄酮类化合物为血竭的特征成分,主要包括血竭素(Dracorhodin)、血竭红素(Dracorubin)、2,4-二羟基-5-甲基-6-甲氧基查尔酮(2,4-dihydroxy-5-methyl-6-methoxychalcone)等。二萜酸主要成分有海松酸(Pimaric acid)、松香酸(Abietic acid)等。Table 1-3列举了迄今为止所报道的血竭所含化学物及其结构。

Flavonoids from Sanguis Draconis

血竭的特征性成分血竭素(Dracorhodin)、血竭红素(Dracorubin)、(2S)-5-甲氧基-6-甲基黄烷-7醇等在龙血竭中均不包含(Shi et al., 2009)。龙血竭所含化学成分结构也多种多样,包括黄烷类、黄酮类、查尔酮类、色原酮类、二苯乙烯类、简单酚类等多种结构类型,具体成分包括剑叶龙血素A、剑叶龙血素B、4'-羟基-3,5-二甲氧基对苯乙烯(紫檀茋)、3,5,4'-三羟基对苯乙烯(白藜芦醇)、剑叶龙血素C等(Wang et al., 1993Shen et al., 2004Wang et al., 2011),由此可见两者在所含有的化学成分上具有显著差异,不应该混淆使用。

Research Progress in Pharmacological Effects

1. 抗炎作用

Kuo et al.(2017)采用人中性粒细胞模型评价了从血竭中分离的4种黄烷-3-醇-二氢反查尔酮二聚体(17-20,Dragonins A-D)的抗炎活性。超氧阴离子参与中性粒细胞吞噬杀伤病原微生物的炎症免疫过程,中性粒细胞弹性蛋白酶可激活和加工肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白介素-1(interleukin-1,IL-1)、IL-6(interleukin-6)、IL-8(interleukin-8)等促炎因子,调节炎症反应。对 N-formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB)诱导人中性粒细胞产生超氧阴离子和弹性蛋白酶的抑制作用进行了测试, Dragonins A、B(17、18)表现明显的抑制作用,其中Dragonins B通过降低应激活化蛋白激酶(Jun N-terminal kinase,JNK)和p38 MAPK(p38 mitogen-activated protein kinase)的活化以及钙动员实现了对fMLP/CB诱导的人中性粒细胞活化的抑制作用。

Diterpenoids from Sanguis Draconis

Yang et al.(2021)以卡波姆为载体基质材料制备了血竭凝胶及龙血竭凝胶,通过建立二甲苯致耳肿胀急性炎症模型和棉球致肉芽肿慢性炎症模型发现,血竭凝胶对两种炎症模型都具有显著的抑制作用,发挥了良好的抗炎效果;而龙血竭凝胶只对棉球致肉芽肿慢性炎症模型有显著的抑制作用,血竭凝胶抗炎效果优于龙血竭凝胶; Heo et al.(2010)评估了血竭的甲醇、正己烷、二氯甲烷、乙酸乙酯、正丁醇和水提取物。结果表明,血竭乙酸乙酯提取物对白介素-1β(interleukin-1β,IL-1β)的产生和环氧化酶-2(cyclooxygenase-2,COX-2)的表达的抑制作用比其他提取物的抑制作用更强。此外,其还能抑制脂多糖(lipopolysaccharide, LPS)处理的人主动脉平滑肌细胞和RAW264.7巨噬细胞中一氧化氮(nitric oxide,NO)、活性氧(reactive oxygen species,ROS)、前列腺素E2(Prostaglandin E2,PGE2)、TNF-α、IL-8和IL-6 的产生,从而抑制LPS诱导的炎症反应。

Apaza Ticona et al. (2021)从血竭中分离鉴定3种化合物Bexarotene(60)、Taspine(61)和2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone(62),并测定这3种化合物对THP-1(Tohoku Hospital Pediatrics-1)、HaCaT(Human immortalized keratinocytes)、NIH-3T3(mouse embryonic Cells)细胞中 nuclear factor kappa-B(NF-κB)的活性均有抑制作用且优于阳性对照,雷公藤红素(Celastrol);对nuclear factor erythroid 2-relatedfactor 2 (NRF2)的活性均表现有激活效应。

血竭提取物具有减少血管炎症,促进成骨细胞分化、矿化、骨形成和抗血小板聚集的活性(Yi et al., 2011)。Chang et al .(2014)研究发现血竭乙醇提取物可以抑制高糖诱导的血管内皮细胞(human umbilical vein endothelial cells,HUVEC)中亚硝酸盐、脂质过氧化的产生和ROS的形成。Western blot分析显示,血竭乙醇提取物降低了汞诱导的HUVEC细胞外信号调节激酶1/2(extracellular signal-regulated kinase 1/2,ERK 1/2)、NF-κB、细胞间粘附分子-1(vascular cell adhesion molecule 1,VCAM-1)和E-选择素的磷酸化,并以剂量依赖性方式阻断 Poly (ADP-ribose) polymerase-1 (PARP-1)蛋白的降解,此外,其还增加了 B-cell lymphoma-2 (Bcl2)蛋白的表达,降低了Bcl-2-associated X protein (Bax)蛋白的表达。因此,血竭乙醇提取物通过抑制ERK/NF-κB/PARP1/Bax信号级联,抑制VCAM-1和E-选择素的激活,从而抑制葡萄糖诱导的HUVEC氧化应激和血管炎症。由于氧化应激水平、凋亡水平和PARP-1激活水平的降低,血竭可能在血管炎症及糖尿病血管并发症中具有治疗潜力。

2. 抑菌作用

Yang et al.(2021)通过抑菌试验发现血竭凝胶及龙血竭凝胶对金黄色葡萄球菌(Staphyloccocus aureus)、表皮葡萄球菌(Staphylococcus epidermidis)、痤疮丙酸杆菌(Propionibacterium acnes)、大肠杆菌(Escherichia coli)和白色念珠菌(Canidia albicans)都表现出一定的抑制效果,对于金黄色葡萄球菌、表皮葡萄球菌和痤疮丙酸杆菌龙血竭的效果优于血竭;对于白色念珠菌血竭的效果优于龙血竭。

Apaza Ticona et al.(2021)发现Bexarotene(60)、Taspine(61)和2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone(62)3种化合物均具有对金黄色葡萄球菌、大肠杆菌和白色念珠菌的抗菌活性且优于阳性对照氧氟沙星的抑菌活性。

Other compounds from Sanguis Draconis

Lin et al.(2019)等人采用2,3-双-(2-甲氧基-4-硝基-5-磺基苯基)-2H-四氮唑-5-羧基苯胺还原试验和扫描电镜研究 loureirin A(10)抗白色念珠菌生物膜作用,通过细胞表面疏水性(cell-surface hydrophobicity,CSH)实验和菌丝形成实验,研究白念珠菌的两种毒力特征(粘附和形态转变)发现,loureirin A(10)在抑制白念珠菌生物膜、减少CSH和抑制菌丝形成方面具有显著作用;反转录聚合酶链式反应(reverse transcription-polymerase chain reaction, RT-PCR)检测白色念珠菌相关基因表达发现,loureirin A(10)始终下调一些粘附相关基因和菌丝/生物膜相关基因的表达。因此loureirin A(10)对真菌生物膜的抑制作用可能与抑制致病性状、粘附和菌丝形成有关。

3. 抗氧化作用

Sri et al. (2019) 分别用正己烷、乙酸乙酯萃取和甲醇提取血竭树脂,采用1,1-二苯基-2-三硝基苯肼自由基(1,1-diphenyl-2-picrylhydrazyl,DPPH·)清除法对提取物的抗氧化性能进行了评价。结果表明血竭乙酸乙酯提取物比甲醇和正己烷提取物具有更高的抗氧化活性。

4. 抗肿瘤作用

血竭素(Xia et al., 2005Xia et al., 2006)可通过凋亡途径诱导人黑色素瘤 (human melanoma A375-S2 cell (A375-S2)细胞和人早幼粒白血病human promyelocytic leukemia (HL-60) 细胞死亡。类似物高氯酸血竭素通过抑制 B-cell lymphoma-XL (Bcl-XL)基因、促进Bax基因的表达和激活半胱天冬酶诱导细胞凋亡,具有抑制肿瘤发生的活性。

González et al.(2003) 报道了龙血竭中龙血竭素A和龙血竭素B对HL-60细胞具有细胞毒活性。这些化合物的细胞毒性机制是通过激活凋亡实现的。

5. 止血、促进伤口愈合

血竭可用于改善血液循环,止血,愈合伤口。 Ji et al. (2015) 使用麒麟血竭散粉结合局部氧气疗法治疗慢性压力性溃疡导致的伤口取得了显著的效果,这种方法减少了病人的住院时间使病人更快康复。 Liu et al.(2013)通过RT-PCR检测发现,血竭能显著刺激创面收缩,增加转化生长因子-β1(transforming growth factor beta 1,TGF-β1)的表达,促进创面愈合过程中的肉芽组织形成和胶原合成,以及血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达,促进创面修复所需的活性生长因子和细胞因子的分泌。

研究发现(Krishnaraj et al., 2019)血竭提取物以及高氯酸血竭素都有促血管生成的作用。高氯酸血竭素能够促进成纤维细胞增殖,能加速Wistar大鼠体内皮肤伤口愈合(Jiang et al., 2018Jiang et al., 2017)。高氯酸血竭素(Lu et al., 2021)能显著增加HaCaT细胞中β-连环蛋白的蛋白表达水平和蛋白激酶B、ERK和p38的激活,对HaCaT细胞的增殖没有诱导作用,但能促进细胞迁移。体外划痕试验的结果表明,在使用高氯酸血竭素治疗后,伤口逐渐闭合,且呈时间依赖性。

用血竭制作损伤、擦伤药物,可以达到伤口止血、保护溃烂的伤口表面不腐烂、生长肌肉组织、缓解慢性伤口的疼痛的功效。Yusnelti & Muhaimin (2019)用10%麒麟竭树脂(血竭)、50%乙醇、50%丙二醇配制液体创面药,将其涂在受伤的皮肤上,前期患者在给伤口上药时感到疼痛,但在伤口周围未发现肿胀、刺激等现象。一周后伤口开始好转,受伤的皮肤感觉不到疼痛。麒麟竭树脂(血竭)制成的液体伤口创面药物治疗30天后,皮肤会恢复正常且受损的皮肤不会留下疤痕,表明血竭具有显著的促进伤口愈合的作用。

6. 活血作用

研究表明,血竭所含化合物(2S)-5-methoxy-6-methylflavan-7-ol(34,MMF)具有抗血小板的能力,MMF是通过抑制环氧合酶和血小板内Ca2+浓度从而防止血栓形成,达到活血的目的(Tsai et al., 1998)。

Yi et al.(2011) 通过家兔体外、大鼠体内血小板抑制试验发现,血竭对家兔体外血小板的聚集、血管旁路血栓形成有抑制作用;血竭比龙血竭更能有效地抑制大鼠体内血小板的聚集。

The bioactivities of Sanguis Draconis

7. 促进骨形成

在临床实践中,血竭显示出预防骨质疏松症和促进骨折愈合的活性。Wang et al.(2012)考察了血竭乙醇提取物β-甘油磷酸和抗坏血酸诱导小鼠颅骨起源MC3T3-E1(mouse embryo osteoblast precursor cells)成骨细胞分化的影响,通过测量碱性磷酸酶和特异性骨标志物活性来观察成骨细胞的分化、增殖和矿化。结果发现血竭乙醇提取物在整个成骨过程中均对细胞增殖有促进作用,细胞碱性磷酸酶活性在培养15天内增加。在血竭乙醇提取物处理的细胞中,骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)、分化标志骨钙素、骨桥蛋白、胶原蛋白I和成骨转录因子Runx2(runt-related transcription factor 2)的mRNA或蛋白水平升高,表明血竭乙醇提取物可能通过刺激细胞碱性磷酸酶活性,影响成骨细胞BMP信号通路级联,进而促进成骨细胞分化、矿化和骨形成,从而增强成骨作用。

血竭、龙血竭都有优良的抗炎、抑菌、抗肿瘤、活血的药理活性,在抗炎、活血活性方面,血竭比龙血竭的活性更优异,此外,血竭还具有抗氧化、促进伤口愈合、促进成骨作用等生物活性,Table 4将血竭的主要生物活性及发挥其活性的主要物质进行了总结。

Conclusion

棕榈科黄藤属植物麒麟竭(D.draco)分泌的红色树脂加工而成的血竭是我国珍稀进口药材血竭的主流品种,麒麟竭主要种植于马来西亚、印度尼西亚等东南亚国家,国内资源有限,我国部分地区有种植其替代品剑叶龙血树(D. cochinchinensis),但品种良莠不齐,相比于某些国内替代品龙血竭,血竭的活性成分完全不同,药理活性存在很大差异,麒麟竭果实渗出的树脂采收简单,不破坏原有植物的生态,可持续进行血竭的生产,是未来重点研究与应用的对象。

血竭中化学组成成分如黄酮、二萜酸等结构母核独特,活性优异,其中血竭红素、血竭素、松香酸等为血竭中的主要活性成分,已经被详细研究,由于分离、纯化的局限性,含量较少的化学成分缺乏活性相关的文献报道,因此本文未能对血竭所有化学成分进行活性的说明,研究开发新成分的活性是一个具有挑战性的任务。血竭在抗炎抑菌、促进伤口愈合(止血)等方面的药理作用未来可能在皮肤领域,骨科领域和肿瘤领域具有重要的研究价值和应用价值。具有非常广阔的应用前景。

Notes

Author's contribution

Z.Y. made major contributions to the pharmacological effects of Sanguis Draconis and Resina Draconis. T.J.W. made major contributions to the chemical composition of Sanguis Draconis. Y.D., L.L., and G.M.M. supervised the project. Y.D. provided plant resources and financial support for the project, L.L. and G.M.M. participated in the entire process of manuscript writing. Z.Y. wrote this manuscript with the assistance of L.L. and G.M.M.

Author details

Zhang Ying (Graduate student), Department of Cosmetics, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China; Tao Junwen (Undergraduate), Department of Cosmetics, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China; Guo Miaomiao (Associate Professor), Department of Cosmetics, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China;Yu Dan (Director of Product R&D), Beijing Lan Divine Technology Co. LTD, No. 59A, Zhongguancun Street, Haidian District, Beijing 100081, China; Li Li (Professor), Department of Cosmetics, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, China.

References

Apaza Ticona L, Rumbero Sánchez Á, Sánchez-Corral J, Iglesias Moreno P, Ortega Domenech M. Anti-inflammatory, pro-proliferative and antimicrobial potential of the compounds isolated from Daemonorops draco (Willd.) Blume. Journal of Ethnopharmacology 268:113668. 2021;
Alberto A, Gianluca N, Vajna de Pava O, Merlini L. Constituents of dragon’s blood. 5. dracoflavans B1, B2, C1, C2, D1, and D2, new A-type deoxyproanthocyanidins. Journal of Natural Products 60:971–975. 1997;
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China China Medical Science Press. Beijing: p. 149. 2020.
Chang Y, Chang TC, Lee JJ, Chang NC, Huang YK, Choy CS, Layakumar T. Sanguis draconis, a dragon's blood resin, attenuates high glucose-induced oxidative stress and endothelial dysfunction in human umbilical vein endothelial cells. Scientific World Journal 2014:423259. 2014;
Du WK, Hung HY, Kuo PC, Hwang TL, Shiu LC, Shiu KB, Lee EJ, Tai SH, Wu TS. Retraction of “Dragonbloodin A1 and A2: flavan trimers and anti-inflammatory principles from Sanguis Draconis”. Organic Letters 18:3042. 2016;
González AG, Hernández JC, León F, Padrón JI, Estévez F, Quintana J, Bermejo J. Steroidal saponins from the bark of Dracaena draco and their cytotoxic activities. Journal of Natural Products 66:793–798. 2003;
Hao Q, Saito Y, Matsuo Y, Li HZ, Takashi T. Three new flavans in dragon’s blood from Daemonorops draco. Natural product research 29:1419–1425. 2015;
Heo SK, Yi HS, Yun HJ, Ko CH, Choi JW, Park SD. Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production. Food and Chemical Toxicology 48:1129–1136. 2010;
Ji S, Zhang GZ, Hua YF, Jin XQ. Sanguis Draconis (Daemonorops draco): a case report of treating a chronic pressure ulcer with tunneling. Holistic Nursing Practice 29:48–52. 2015;
Jin YB, Sun YX, Lei JT, Wei GH. Dihydrochalcone molecules destabilize Alzheimer’s amyloid-β protofibrils through binding to the protofibril cavity. Physical Chemistry Chemical Physics 20:17208–17217. 2018;
Jiang XW, Liu L, Qiao L, Zhang BQ, Wang XW, Han YW, Yu WH. Dracorhodin perchlorate regulates fibroblast proliferation to promote rat’s wound healing. Physical Chemistry Chemical Physics 136:66–72. 2018;
Jiang XW, Qiao L, Liu L, Zhang BQ, Wang XW, Han YW, Yu WH. Dracorhodin perchlorate accelerates cutaneous wound healing in wistar rats. Evidence-Based Complementary and Alternative Medicine 2017:8950516. 2017;
Kuo PC, Hung HY, Hwang TL, Du WK, Ku HC, Lee EJ, Tai SH, Chen FA, Wu TS. Anti-inflammatory flavan-3-ol-dihydroretrochalcones from Daemonorops draco. Journal of Natural Products 80:783–789. 2017;
Krishnaraj P, Chang Y, Ho TJ, Lu NC, Lin MD, Chen HP. In vivo pro-angiogenic effects of dracorhodin perchlorate in zebrafish embryos: a novel bioactivity evaluation platform for commercial dragon blood samples. Journal of Food and Drug Analysis 27:259–265. 2019;
Luo DQ, Du W, Huang Y, Fan BJ, Yang YL, Liu JS, Wei F, Ma SC. New quality problems and control methods for imported Draconis Sanguis. Chinese Pharmaceutical Journal 54:1794–1796. 2019;
Lin MY, Yuan ZL, Hu DD, Hu GH, Zhang RL, Zhong H, Yan L, Jiang YY, Su J, Wang Y. Effect of loureirin A against candida albicans biofilms. Chinese Journal of Natural Medicines 17:616–623. 2019;
Liu H, Lin S, Xiao D, Zheng X, Gu Y, Guo S. Evaluation of the wound healing potential of resina draconis (Dracaena cochinchinensis) in animal models. Evidence-Based Complementary and Alternative Medicine 2013:709865. 2013;
Lu CC, Yang JS, Chiu YJ, Tsai FJ, Hsu YM, Yin MC, Juan YN, Ho TJ, Chen HP. Dracorhodin perchlorate enhances wound healing via β-catenin, ERK/p38, and AKT signaling in human HaCaT keratinocytes. Experimental and Therapeutic Medicine 22:822–822. 2021;
Nakashima KI, Abe N, Kamiya F, Ito T, Oyama M, Iinuma M. Novel flavonoids in Dragon’s blood of Daemonorops draco. Helvetica Chimica Acta 92:1999–2008. 2009;
Rao GS, Gerhart MA, Lee RT, Mitscher LA, Drake S. Antimicrobial agents from higher plants. Dragon’s blood resin. Journal of Natural Products 45:646–648. 1982;
Sri P, Wulan TW, Irmanida B. Antioxidant activity of Daemonorops draco resin. Journal of Scientific and Applied Chemistry 22:179–183. 2019;
Shen CC, Tsai SY, Wei SL, Wang ST, Shieh BJ, Chen CC. Flavonoids isolated from Draconis Resina. Natural Product Research 21:377–380. 2007;
Schmid M, Trauner D. Biomimetic synthesis of complex flavonoids isolated from Daemonorops “Dragon’s Blood”. Angewandte Chemie 56:12332–12335. 2017;
Shi J, Hu R, Lu Y, Sun C, Wu T. Single-step purification of dracorhodin from dragon’s blood resin of Daemonorops draco using high-speed counter-current chromatography combined with pH modulation. Journal of Separation Science 32:4040–4047. 2009;
Shen XM, Wang ZH, Chen C, He L, Tu PF. Chemical constituents from resin of Dracaena cochinchinensis. Chinese Traditional and Herbal Drugs 35:728–730. 2004;
Tsai WJ, Hsieh HT, Chen CC, Kuo YC, Chen CF. Characterization of the antiplatelet effects of (2S)-5-methoxy-6-methylflavan-7-ol from Draconis Resina. European Journal of Pharmacology 346:103–110. 1998;
Wang W, Olson D, Cheng B, Guo X, Wang KZ. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. Journal of Ethnopharmacology 142:168–174. 2012;
Wang XF, Lu WJ, Chen JY. Studies on the chemical constituents of Dracaena cochinchinensis (Lour.) S. C. Chen I. structural determination of cochinchinenin A and B. Guangxi Journal of Traditional Chinese Medicine 16:38–39. 1993;
Wang Y, Xiao YQ, Yuan SL, Yu HF, Wang XH, Zhang RP. The comparative study on the chemical constituents of artificial induced and wild Dragon’s Blood. Journal of Yunnan University 33:366–369. 2011;
Wang YY, Dai YW, Cao J, Chen YT, Zhao CX, Jiang L. Eight new flavonoids from the fruits of Daemonorops draco. Fitoterapia 143:104549. 2020;
Xia M, Wang M, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin perchlorate induces A375-S2 cell apoptosis via accumulation of p53 and activation of caspases. Biological Pharmaceutical Bulletin 28:226–232. 2005;
Xia MY, Wang M, Cui Z, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin perchlorate induces apoptosis in HL-60 cells. Journal of Asian Natural Products Research 8:335–343. 2006;
Yang LH, Zhang ZB, Yang H, Yang JL, Hu D, Yang XL, Luo CY, Zhang RP. Comparative study on anti-inflammatory and antimicrobial effects for two kinds of the resin gel. Journal of Kunming Medical University 42:6–11. 2021;
Yusnelti Muhaimin. Utilization of Jernang resin (Daemonorops draco) as the basic material for making liquid wound medicine. Journal of Physics: Conference Series 1338:012011. 2019;
Yi T, Chen HB, Zhao ZZ, Yu ZL, Jiang ZH. Comparison of the chemical profiles and anti-platelet aggregation effects of two “Dragon’s Blood” drugs used in traditional Chinese medicine. Journal of Ethnopharmacology 133:796–802. 2011;
Zhang L, Wang XP, Huang XW, Wu RJ, Zhang Y, Shou D. Advance of the chemical components and pharmacological effects of Draconis Sanguis and resina draconis. Chinese Journal of Modern Applied Pharmacy 36:2605–2611. 2019;
Zhao X, Wang X, Gao S, Tian J, Zhao N, Li P, Tu P. Origin of Draconis Sanguis. Modern Chinese Medicine 17:497–501. 2015;

Article information Continued

Table 1.

Flavonoids from Sanguis Draconis

Table 2.

Diterpenoids from Sanguis Draconis

Table 3.

Other compounds from Sanguis Draconis

Table 4.

The bioactivities of Sanguis Draconis

biological activity Main content Active substance
Anti-inflammatory Inhibits FMLF-induced activation of human neutrophils Dragonins B (18)
Inhibiting LPS induced inflammatory response by inhibiting ROS production Ethyl acetate extract of Sanguis Draconis
Significant inhibitory effect on xylene induced ear swelling acute inflammation model and cotton ball induced granuloma chronic inflammation model Gel of Sanguis Draconis
Inhibition of NF-κB activity and Activates Nrf2 activity in THP-1, HaCaT, NIH-3T3 cells Bexarotene (60), Taspine (61), 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (62)
Carbomer Inhibition of glucose induced oxidative stress and vascular inflammation in vascular endothelial cells Ethanol extract of Sanguis Draconis
Bacteriostat It has certain inhibitory effects on Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli and Candida albicans Gel of Sanguis Draconis
Antibacterial activity against Staphylococcus aureus, Escherichia coli and Candida albicans Bexarotene (60), Taspine (61), 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (62)
Inhibiting the formation of biofilm and hyphae of Candida albicans Loureirin A (10)
Antioxidant antioxidant activity of clear DPPH· (IC50=27.61μg/mL) Ethyl acetate extract of Sanguis Draconis
Anti-tumor Inducing death of human melanoma A375-S2 cells and human promyelocytic leukemia HL-60 cells through apoptosis pathway Draconin perchlorate
Stop bleeding and promote wound healing Promote the secretion of active growth factors and cytokines required for wound repair Sanguis Draconis
Promote HaCaT cell migration and promote wound closure in vitro scratch experiments Draconin perchlorate
Repair skin wounds without leaving scars on damaged skin Liquid wound dressing of Sanguis Draconis
Promoting blood circulation Significantly inhibits platelet aggregation (2S)-5-methoxy-6-methylflavan-7-ol (34)
Promotes osteogenesis Promote osteoblast differentiation, mineralization and bone formation Ethanol extract of Sanguis Draconis